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The clinical spectrum of herpes simplex virus (HSV) infections, ranging from asymptomatic
to frequently distressing outbreaks, suggests that there may be immunologic determinants of
disease severity that are associated with human leukocyte antigen (HLA) expression. A con-
trolled, prospective study identified several major histocompatibility complex (MHC) class I
and II antigens whose frequencies are associated with HSV-2 infection or with frequent symp-
tomatic genital recurrences. Previous studies were hampered by the inability to serologically
identify patients with asymptomatic HSV-2 infection. Clinical evaluation and Western blot
assay were used to identify 3 subject cohorts: 1 with no prior HSV infections, 1 with HSV-2
antibodies but no recognized symptoms, and 1 with HSV-2 antibodies and frequent genital
recurrences. Statistical comparisons of HLA frequencies among these cohorts showed asso-
ciations of HLA-B27 and -Cw2 with symptomatic disease. Also, HLA-Cw4 was significantly
associated with HSV-2 infection. These associations indicate that immunologic factors linked
to the MHC influence the risk of HSV-2 infection and disease expression.

Clinicians have long appreciated the pleiotropic manifesta-
tions of genital herpes. Symptomatic herpes simplex virus type
2 (HSV-2) infections present as frequent and painful recurrences
in some persons, while others recognize only a single primary
outbreak without subsequent recurrences or only rare recur-
rences [1–3]. Recently, another subset of HSV-2–infected pa-
tients has been delineated and well characterized: those with
no recognized primary illness or recurrences but with subclinical
or totally asymptomatic infection and reactivation [4–6]. Both
groups of infected individuals shed virus and transmit it to
intimate partners and neonates [7–9].

The development of type-specific serologic assays has now
permitted the reliable identification of asymptomatically in-
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fected people [10]. The ability to accurately define both the
symptomatic and asymptomatic ends of the spectrum of HSV-
2 infections provides new opportunities to study host factors
that could determine the extent to which people will recognize
and suffer herpetic recurrences.

One host mechanism that could contribute to the overall
response to and clinical expression of HSV-2 infection is the
human major histocompatibility complex (MHC), which com-
prises the loci of genes, including the human leukocyte antigens
(HLAs) [11]. HLA-A, -B, and -Cw genes constitute the family
of MHC class I antigens, which present endogenously derived
foreign peptides to CD81 cytotoxic T lymphocytes (CTL).
MHC class II antigens include HLA-DR and -DQ, which pre-
sent exogenously derived foreign peptides to CD41 T helper
lymphocytes.

The extreme polymorphism of MHC molecules, most pre-
dominant in their peptide binding clefts, is credited with a por-
tion of individual variability in intrinsic immunity. Individual
HLAs and the peptides they present influence the vigor with
which a response is mounted and, in some instances, whether
that response will be directed against self antigens. Thus, HLA
determinants can be, and in many instances have been, asso-
ciated with disease severity and spectrum [12, 13]. HLA-B27
has perhaps the most infamous of disease associations, being
strongly linked to the eventual development of spondyloar-
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Table 1. Clinical and demographic characteristics of the study pop-
ulation according to HSV infection status.

Characteristics

Infection status

Symptomatic Asymptomatic Uninfected

No. of subjects 47 44 55
Men 21 (45) 16 (36) 35 (64)
Women 26 (55) 28 (64) 20 (36)

No. HSV-1 seropositive 19 (40) 22 (50) 0 (0)
Men 10 (21) 5 (11) 0 (0)
Women 9 (19) 17 (39) 0 (0)

Mean age (years) 39.0 38.5 37.4
Men 42.0 38.3 38.6
Women 36.5 38.6 35.3

Mean lesional recurrences/year 8.4 0 0
Men 8.8 0 0
Women 8.1 0 0

NOTE. Data in parentheses are % of subjects. Symptomatic and asymp-
tomatic subjects were seropositive for HSV-2 and seronegative or seropositive for
HSV-1; uninfected subjects were seronegative for both HSV-1 and -2.

thropathies and acute anterior uveitis [14]. The haplotype HLA-
A1, -B8, -DR3 is associated with heightened susceptibility to
dermatitis herpetiformis and autoimmune hepatitis [15] and,
recently, with increased risk for human immunodeficiency virus
(HIV) disease [16].

As with other targets of host defenses, innate antiviral im-
mune mechanisms rely on MHC class I and class II peptide
presentation, suggesting that allelic polymorphisms contribute
to individual variability in antiviral immunity. A number of
studies have addressed this question with regard to HSV in-
fections [17–20]; however, difficulty in identifying the appro-
priate uninfected control participants has until now confounded
their interpretation. That is, in the absence of type-specific se-
rologic tests, the failure to recognize and accurately diagnose
certain individuals (i.e., those who are infected with one or the
other HSV type yet remain asymptomatic) diluted groups of
truly uninfected controls by their presence. Moreover, there
could be no reliable comparison of HLA frequencies among
the important groups of symptomatically and asymptomati-
cally infected persons.

We present here the HLA typing results of 3 carefully defined
patient populations representing (1) individuals experiencing six
or more symptomatic genital HSV-2 recurrences per year (when
untreated), (2) individuals who are truly uninfected (HSV-1–
and HSV-2–seronegative), and (3) those who have serologic
evidence of HSV-2 infection but no symptomatic disease despite
evaluation and counseling as to its usual features. The asso-
ciations we found extend our current understanding of host
responses to and the immunopathogenesis of HSV-2 disease.

Materials and Methods

Study population. Otherwise healthy study participants (n 5
) were selected from larger pools of persons being evaluated at146

three centers for their suitability for vaccine or antiviral drug stud-
ies. Screening for these studies necessitated HSV type-specific se-
rologic testing by Western blot [10]. The results occasionally iden-
tified HSV-2–seropositive persons who had no history of symptoms
consistent with genital herpes and who, after receiving instructions
regarding the usual spectrum of symptoms and signs, still claimed
no previous symptoms.

We initially sought 150 subjects: 50 with serologically and clin-
ically confirmed genital HSV-2 infection that was reported to recur
six or more times per year prior to suppressive antiviral treatment,
50 HSV-2–seropositive yet asymptomatic individuals; and 50 who
were seronegative for both HSV-1 and HSV-2. During enrollment
and screening at three study sites, 162 subjects underwent HLA
determination. Sixteen study participants, who were Asian, His-
panic, or African-American, were excluded from analysis because
there were not sufficient numbers of racially matched control
subjects.

HLA results of 146 white subjects were analyzed: 47 were sero-
positive for HSV-2 with or without HSV-1 and had frequent,
clinically documented symptomatic genital recurrences; 44 sub-

jects were seropositive for HSV-2 with or without HSV-1 and had
asymptomatic infection; and 55 were seronegative for HSV-1 and
HSV-2.

Typing methods. Four unrefrigerated 10-mL tubes with each
subject’s blood in acid citrate dextrose were shipped overnight to
the University of California in Los Angeles for HLA typing. Lym-
phocytes were isolated, and CD41 and CD81 T cells were purified
by positive selection, using immunomagnetic beads [21, 22]. Class
I (HLA-A, -B, -Cw) typing was done by use of serologic methods
[21], and class II (HLA-DQ, -DR) typing was done by use of
polymerase chain reaction [23, 24]. All data were tabulated ac-
cording to clinical and serologic study group for statistical analysis.

Statistical methods. HLA data were analyzed to evaluate a
possible association of alleles with HSV-2 infection or symptomatic
disease. Gene frequencies were estimated from phenotypic data,
under the Hardy-Weinberg law, using the maximum likelihood
method [25, 26]. For comparing cases and controls in each of the
specific alleles at each locus, individual x2 and Fisher’s exact tests
were calculated [26, 27]. Bonferroni’s correction for multiple com-
parisons was performed for the tests that showed significance [26,
28]. Fisher’s exact test was also used for detecting a haplotype
association with infection or disease [27]. All reported P values
were two-tailed unless stated otherwise.

Results

Characteristics of the study population. Table 1 shows the
characteristics of the study population with respect to sex, age,
HSV serology, and HSV disease, and HLA group.

Gene frequencies of the 3 cohorts at the MHC class I and class
II loci. Tables 2–6 show the gene frequencies of the study
participants at the MHC class I loci HLA-A, -B, and -Cw and
the class II loci HLA-DR and -DQ. HLA-A2, the most com-
mon of the HLA-A loci polymorphisms, was most prevalent
in all 3 study cohorts. Greater allelic diversity is seen in the
HLA-B loci, with HLA-B35 most frequent in HSV-infected
participants and HLA-B7 most frequent in uninfected individ-
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Table 2. Gene frequencies at the human leukocyte antigen A (HLA-A) locus for subjects in 3 study cohorts.

HLA-A allele

Symptomatic subjects (n 5 47) Asymptomatic subjects (n 5 44) Uninfected subjects (n 5 55)

Ga No.b fc Ga No.b fc Ga No.b fc

1 16 2 .191 5 .041 7 0 .080 5 .029 18 2 .182 5 .037
2 21 2 .245 5 .045 20 2 .249 5 .047 24 2 .236 5 .041
3 14 1 .160 5 .038 13 4 .190 5 .042 13 0 .118 5 .031
11 8 0 .085 5 .029 5 0 .057 5 .025 2 0 .018 5 .013
23 0 0 — 1 0 .011 5 .011 2 0 .018 5 .013
24 5 0 .053 5 .023 6 0 .068 5 .027 13 0 .118 5 .031
25 2 0 .021 5 .015 1 0 .011 5 .011 1 0 .009 5 .009
26 5 0 .053 5 .023 4 0 .045 5 .022 10 0 .091 5 .027
28 3 0 .032 5 .018 3 1 .042 5 .022 5 0 .045 5 .020
29 4 0 .043 5 .021 4 0 .045 5 .022 4 0 .036 5 .018
30 4 1 .053 5 .023 2 0 .023 5 .016 1 0 .009 5 .009
31 3 0 .032 5 .018 6 0 .068 5 .027 4 0 .036 5 .018
32 0 0 — 5 0 .057 5 .025 5 0 .045 5 .020
33 2 0 .021 5 .015 4 0 .045 5 .022 2 0 .018 5 .013
34 1 0 .011 5 .011 0 0 — 1 0 .009 5 .009
66 0 0 — 0 0 — 1 0 .009 5 .009
Blank 0 .000 5 .020 0 .008 5 .023 0 .000 5 .017

No. of codominant alleles 13 14 16

a Antigen frequency.
b No. of subjects reacting to single antigen only.
c Estimated gene frequency 5 SE.

uals. At the HLA-Cw locus, HLA-Cw7 is most common in all
cohorts.

Among class II alleles, DR-13 is most frequently seen in
participants with symptomatic HSV infection, and DR-4 is
most frequent in individuals with asymptomatic HSV infection.
In the uninfected population, both DR-13 and DR-4 are
equally frequent isoforms. At the DQ loci, the DQ-2, -3, -5,
and -6 isoforms are all prevalent.

Increased frequencies of individual genes in HSV-2–seroposi-
tive subjects. We compared the gene frequencies of the 91
HSV-2–infected symptomatic and asymptomatic subjects with
those of the 55 HSV-seronegative subjects. The frequencies of
several genes were significantly higher in HSV-2–seropositive
subjects (table 7).

An increase of allele A11 frequency is borderline significant
( ). Significant elevations of frequencies of alleles B35P 5 .05
( ) and B38 ( ) were found in infected subjects.P 5 .02 P 5 .02
These three allelic frequencies were not significant when ad-
justments for multiple comparisons were made. None of the
class II (DR and DQ loci) genes were associated with HSV-2
infection.

The number of HSV-2–infected subjects with the Cw4 antigen
was 13-fold greater than that among uninfected controls
( vs. ; odds ratio, 4.22). As shown in27/91 5 0.30 5/55 5 0.09
table 7, the increased Cw4 frequency was highly significant
( ). Even with application of Bonferroni’s correctionP 5 .003
for multiple comparisons, the difference between infected and
uninfected subjects was still significant ( ).P 5 .027

Differing gene frequencies among symptomatic and asympto-
matic subjects with HSV-2 infection. Table 7 compares the
estimated individual gene frequencies that had statistically sig-

nificant differences between cohorts of symptomatically and
asymptomatically infected subjects. HLA-A1, -DR13, and
-DQ6 are positively associated with having frequent sympto-
matic recurrences of genital herpes. HLA-A32, -B27, and -Cw2,
however, are negatively associated with symptomatic disease.
Given the many alleles studied, particularly at the A and B
loci, one may say that some comparisons would appear sig-
nificant by chance. With statistical correction for multiple com-
parisons, however, the comparisons involving B27 and Cw2
still yielded strong trends toward significance ( andP 5 .08

, respectively).P 5 .06
Frequencies of individual haplotypes in the study cohorts.

The “autoimmune” haplotype, A1, B8, and DR3, occurred in
5 (10.6%) of 47 symptomatic patients, 2 (4.5%) of 44 asymp-
tomatic patients, and 9 (16.4%) of 55 uninfected persons. Thus,
the allelic frequency of these haplotypes in symptomatic persons
was more than twice that in asymptomatic persons, but the
difference did not achieve statistical significance. Moreover, the
frequency (7.7%) of this haplotype among all 91 infected sub-
jects was less than half that for uninfected subjects ( ).P 5 .09
Of the 91 infected subjects, 24 (26.4%) had two antigens at
different loci, B35 and Cw4, while 5 (9.1%) of 55 uninfected
subjects had the two antigens at different loci. Fisher’s exact
test showed a significant association of the haplotype B35-Cw4
with infection ( ).P 5 .01

The frequencies of the haplotype A11, B35 also showed in-
teresting differences among the study cohorts. This haplotype
was seen in 4 (8.5%) of 47 symptomatic patients and in 2 (4.5%)
of 44 asymptomatic patients but in no uninfected subjects. A
positive association of A11, B35 with HSV-2 infection is almost
significant using a one-tailed exact test ( ).P 5 .055
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Table 3. Gene frequencies at the human leukocyte antigen B (HLA-B) locus for subjects in 3 study cohorts.

HLA-B allele

Symptomatic subjects (n 5 47) Asymptomatic subjects (n 5 44) Uninfected subjects (n 5 55)

Ga No.b fc Ga No.b fc Ga No.b fc

7 9 0 .097 5 .030 10 0 .114 5 .034 15 3 .159 5 .035
8 10 0 .160 5 .032 4 0 .045 5 .022 11 1 .107 5 .030
13 7 0 .074 5 .027 4 0 .045 5 .022 2 0 .018 5 .013
14 4 0 .043 5 .021 5 0 .057 5 .025 7 0 .064 5 .023
18 2 0 .021 5 .015 4 0 .045 5 .022 7 0 .064 5 .023
27 0 0 — 7 0 .080 5 .029 9 0 .082 5 .026
35 14 0 .149 5 .037 14 1 .169 5 .040 6 0 .055 5 .022
37 1 0 .011 5 .011 0 0 — 0 0 —
38 3 0 .032 5 .018 3 0 .034 5 .018 0 0 —
39 0 0 — 1 0 .011 5 .011 1 0 .009 5 .009
41 3 0 .032 5 .018 1 0 .011 5 .011 1 0 .009 5 .009
44 12 0 .128 5 .034 10 2 .133 5 .036 12 1 .116 5 .031
45 1 0 .011 5 .011 0 0 — 1 0 .009 5 .009
47 0 0 — 1 0 .011 5 .011 0 0 —
49 0 0 — 2 0 .023 5 .016 2 0 .018 5 .013
50 1 0 .011 5 .011 2 0 .023 5 .016 0 0 —
51 7 0 .074 5 .027 1 1 .016 5 .013 5 0 .045 5 .020
52 1 0 .011 5 .011 0 0 — 1 1 .012 5 .010
53 1 0 .011 5 .011 2 0 .023 5 .016 0 0 —
55 0 0 — 1 0 .011 5 .011 1 0 .009 5 .009
56 0 0 — 0 0 — 1 0 .009 5 .009
57 2 0 .021 5 .015 2 0 .023 5 .016 3 0 .027 5 .016
58 4 0 .043 5 .021 0 0 — 1 0 .009 5 .009
60 7 0 .074 5 .027 3 0 .034 5 .019 10 0 .091 5 .028
61 0 0 — 1 0 .011 5 .011 2 0 .018 5 .013
62 4 0 .043 5 .021 4 0 .045 5 .022 5 0 .045 5 .020
63 1 0 .011 5 .011 1 0 .011 5 .011 0 0 —
70 0 0 — 1 0 .011 5 .011 1 0 .009 5 .009
Blank 0 .000 5 .016 0 .011 5 .021 0 .014 5 .020

No. of codominant alleles 20 23 22

a Antigen frequency.
b No. of subjects reacting to single antigen only.
c Estimated gene frequency 5 SE.

Discussion

Herein, we report MHC class I and class II antigen fre-
quencies that are associated with HSV-2 infection or with the
likelihood that HSV infection will be manifested by frequent
symptomatic recurrences. These observations are compatible
with known associations between polymorphisms at HLA loci
and responses to other microbial pathogens, and they implicate
host immune factors as determinants of the risks of HSV-2
infection and disease.

Coexpression of HSV peptides in the context of MHC class
I and class II antigens is required for CD81 T cell killing of
infected cells and for CD41 T cell–mediated regulation of B
cell responses to viral proteins, respectively [29–31]. All herpes
viruses studied possess mechanisms for deterring these host
responses by down-regulating the presentation of their antigens
together with MHC proteins and by severely limiting their an-
tigen expression during latency. Epstein-Barr virus nuclear an-
tigen-1 (EBNA-1), for example, is the only protein required for
viral persistence in B cells, and it contains a glycine-alanine
repeat motif that blocks proteosomal degradation and antigen
presentation [32]. Cytomegalovirus encodes 4 gene products
that, together, block multiple steps in MHC presentation [33,

34]. HSV-1– and -2–infected cell protein 47 (ICP47) blocks pep-
tide transport into the Golgi complex, where ICP47 would nor-
mally bind to class I a chains, while the gene 41 protein shuts
off host cell protein synthesis, including the MHC proteins [35,
36]. Further, HSV-associated fetal loss may be due to impaired
trophoblast expression of HLA-G, a nonclassical class I protein
with significant homology to HLA-A and -B, and resultant NK
cell–mediated cytotoxicity [37, 38]. Moreover, HSV-1 and -2
persist in neurons, which normally display no class I molecules,
and while latent, these express only one family of transcripts,
which are not known to encode proteins [39]. For much of their
residence in humans, then, HSV-1 and -2 are essentially invisible
to the immune system. Immune responses to HSV are engaged
only during the typically brief periods in which the virus is
replicating in peripheral tissues while en route to or from its
neuronal sanctuary. The nature and efficiency of these responses
determine the outcome of each episode of infection [40].

The HLA isotype and the particular viral peptides that it
binds are one set of factors that influence the outcome of a
given herpesvirus infection. That the responsiveness of T cells
from healthy seropositive individuals to HSV or cytomegalo-
virus glycoproteins B relates to the HLA haplotype provides
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Table 4. Gene frequencies at the human leukocyte antigen Cw (HLA-Cw) locus for subjects in 3 study cohorts.

HLA-Cw allele

Symptomatic subjects (n 5 47) Asymptomatic subjects (n 5 44) Uninfected subjects (n 5 55)

Ga No.b fc Ga No.b fc Ga No.b fc

1 5 2 .056 5 .024 2 1 .023 5 .016 6 1 .056 5 .022
2 0 0 — 6 1 .070 5 .028 6 3 .059 5 .023
3 12 3 .135 5 .036 8 0 .091 5 .031 19 4 .187 5 .039
4 13 4 .149 5 .038 14 7 .184 5 .043 5 2 .048 5 .021
5 6 1 .065 5 .026 4 2 .048 5 .023 10 2 .096 5 .029
6 12 6 .143 5 .037 8 0 .091 5 .031 6 0 .055 5 .022
7 18 5 .209 5 .044 20 7 .259 5 .050 29 9 .307 5 .047
8 2 1 .022 5 .015 3 1 .035 5 .020 6 0 .055 5 .022
Blank 2 .222 5 .049 2 .199 5 .050 1 .137 5 .041

No. of codominant alleles 7 8 8

a Antigen frequency.
b No. of subjects reacting to single antigen only.
c Estimated gene frequency 5 SE.

Table 5. Gene frequencies at the human leukocyte antigen DQ (HLA-DQ) locus for subjects in 3 study cohorts.

HLA-DQB1 allele

Symptomatic subjects (n 5 47) Asymptomatic subjects (n 5 44) Uninfected subjects (n 5 55)

Ga No.b fc Ga No.b fc Ga No.b fc

02 18 1 .202 5 .042 19 3 .250 5 .047 20 2 .200 5 .039
03 22 3 .266 5 .046 24 5 .330 5 .051 29 5 .309 5 .045
04 5 0 .053 5 .023 3 0 .034 5 .019 3 0 .027 5 .016
05 16 1 .181 5 .040 16 2 .205 5 .043 19 1 .182 5 .037
06 25 3 .298 5 .048 14 1 .170 5 .040 29 2 .282 5 .044
Blank 0 .000 5 .033 0 .000 5 .031 0 .000 5 .030

No. of codominant alleles 5 6 5

a Antigen frequency.
b No. of subjects reacting to single antigen only.
c Estimated gene frequency 5 SE.

one indication that the MHC may modulate the pathogenesis
of herpesvirus diseases [41, 42]. Moreover, particular MHC
class I proteins determine which viral peptides can serve as
targets for CTL killing. For example, EBNAs 3A, 3B, and 3C
serve as CTL targets over a wide range of HLA backgrounds;
however, responses to Epstein-Barr virus latent membrane pro-
tein 2 and EBNA 2 engage CTL with a limited number of HLA
determinants [43].

Several epidemiologic studies addressed the clinical correlates
of HLA alleles in HSV disease. Studies of a Sicilian population
identified a negative correlation of HLA-B35 and a positive
correlation of HLA-DR2 [17, 18] with HSV-1 infection, findings
that were not confirmed for HSV-2 in our study. HLA asso-
ciations with labial herpes infection in an Iraqi population
showed significantly higher frequencies of HLA-A1, -B8, and
-DR1 in the infected cohort; however, subgroup analyses found
no associations with higher recurrence rates [19]. The high prev-
alence of HSV-1 infection worldwide, however, would imply
that most of the HSV-1–negative controls in the Iraqi study
were actually asymptomatic and not identifiable as such by the
methods employed. If that is true, their higher frequency of A1
antigens would agree with the present data that distinguish
symptomatic and asymptomatic persons with HSV-2 infection.
The study of the Framingham cohort (1977–1979) found a
decreased frequency of HLA-Bw16 and an increased frequency

of Cw2 in individuals with a history of herpes labialis [20]. In
that study, however, 63% of the control population relating no
history of cold sores had detectable HSV-1 titers compared with
93% of the cohort giving a positive history, verifying the un-
reliability of patient history as a marker of serologic status.

Correlations between selected HLA allelic isoforms and
postherpetic erythema multiforme have also been described and
illustrate the potential impact of HLA and disease expression
in herpes simplex infections. HLA-B62 and -B35 were signifi-
cantly more frequent in affected patients, while the autoimmune
haplotype A1, B8, and DR3 appeared to be protective [44]. A
variety of studies showed that MHC class II isoforms HLA-
DR1, -DR4, and -DR53 occurred more frequently in erythema
multiforme–affected individuals; however, none of the studies
confirmed the findings of the other [44–47].

Thus, there are common inconsistencies among studies of
HLA associations with HSV infection. Some of the inconsis-
tencies may have arisen because of multiple comparisons
among data obtained from small study cohorts—a potentially
valid concern regarding the present data, although we did per-
form statistical corrections to accommodate the multiple com-
parisons. In all of the prior HSV studies, however, an equally,
if not more, important factor affecting their validity was the
inability to accurately define the serologic status and to verify
the clinical presentation of the subjects.
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Table 6. Gene frequencies at the human leukocyte antigen DR (HLA-DR) locus for subjects in 3 study cohorts.

HLA-DR allele

Symptomatic subjects (n 5 47) Asymptomatic subjects (n 5 44) Uninfected subjects (n 5 55)

Ga No.b fc Ga No.b fc Ga No.b fc

1 12 1 .138 5 .036 10 1 .123 5 .035 17 0 .155 5 .035
3 10 0 .106 5 .032 7 1 .088 5 .030 12 1 .118 5 .031
4 11 2 .138 5 .036 17 3 .223 5 .045 16 2 .164 5 .035
7 10 0 .106 5 .032 14 2 .178 5 .041 11 0 .100 5 .029
8 3 0 .032 5 .018 1 0 .011 5 .011 3 0 .027 5 .016
10 0 0 — 1 0 .011 5 .011 1 0 .009 5 .009
11 9 0 .095 5 .030 6 0 .068 5 .027 9 0 .082 5 .026
12 3 0 .032 5 .018 1 0 .011 5 .011 2 0 .018 5 .013
13 14 4 .191 5 .041 7 1 .088 5 .030 18 0 .164 5 .035
14 2 0 .021 5 .015 4 0 .045 5 .022 3 0 .027 5 .016
15 12 0 .128 5 .035 9 0 .102 5 .033 14 1 .136 5 .033
16 1 0 .011 5 .011 3 0 .034 5 .019 0 0 —
Blank 0 .000 5 .022 0 .016 5 .028 0 .000 5 .020

No. of codominant alleles 11 12 11

a Antigen frequency.
b No. of subjects reacting to single antigen only.
c Estimated gene frequency 5 SE.

Table 7. Comparison of estimated individual gene frequencies with significant differences between study cohorts.

Allele

Infected (n 5 91) vs. uninfected (n 5 55)

Allele

Symptomatic (n 5 47) vs. asymptomatic (n 5 44)

Difference (%) 5 SE x2 P Difference (%) 5 SE x2 P

A11 5.3 5 2.7 3.85 .05 A1 11.1 5 5.0 4.92 .03
A32 25.7 5 2.4 5.63 .02

B35 8.8 5 3.7 5.66 .02 B27 28.0 5 2.8 8.15 .004
B38 4.4 5 1.9 5.36 .02

Cw4 11.7 5 4.1 8.14 .003 Cw2 27.0 5 2.6 7.24 .007

DR13 10.3 5 5.2 3.92 .05
DQB1∗06 12.8 5 6.4 4.00 .05

In the present study, we used the Western blot assay to verify
serologic status [10], and patients were documented clinically
to have frequently recurring symptomatic genital herpes. A co-
hort of truly HSV-seronegative and, thus, uninfected subjects
was established, and their HLA frequencies were compared
with those of well-characterized HSV-2–infected cohorts. In so
doing, we found several HLA loci to be associated with HSV-
2 infection. Of these, the greatest proportional difference was
with HLA-Cw4, which was detected in significantly more in-
fected than uninfected subjects. Correlation of HLA-Cw4 with
HSV infection may be due to inefficient or loss of appropriate
triggering of the CTL response. Clearance of HSV-2 from gen-
ital lesions is associated with high-level CTL response [48]. The
levels of HSV-specific CD81 CTL precursors are lower in HIV-
infected patients who experience recurrent HSV-2 disease than
in patients with mild HSV disease [49]. Further, HSV-1–infected
cells are resistant to CTL-induced apoptosis [50]. Possibly, early
and aggressive elimination of virally infected cells by CTL pre-
vents HSV disease. That infection could be abrogated entirely
is suggested by studies of HIV disease, in which innate im-
munity, as defined by chemokine receptor polymorphisms, does
prevent HIV infection [51]. Proof that innate immunity could

prevent HSV-2 infection would require detailed observations
and daily cultures for virus shedding in well-characterized, sero-
discordant couples.

HLA-B27 and HLA-Cw2 are associated with asymptomatic
infection. In African-Americans, HLA-Cw2 is associated with
an increased risk of developing multiple myeloma [52], while
HLA-B27 is a well recognized risk factor for spondyloarthro-
pathies and acute anterior uveitis [14]. HLA-B27–linked spon-
dyloarthropathies arise following certain bacterial genito-
urinary infections [14]. Similarly, male HLA-B27/human
b2-microglobulin–transgenic mice develop spontaneous arthri-
tis of the hind legs and nail changes when moved from sterile
to conventional housing [53]. These mice are also susceptible
to Listeria monocytogenes, developing severe inflammatory
bowel disease and dying upon exposure [54]. Further, trans-
fected human monocytic lines expressing HLA-B27 show im-
paired elimination of Salmonella enteritidis [55].

The cumulative data argue that MHC-linked factors con-
tribute to disease symptomatology, although the nexus of im-
mune interactions with HSV may be too complex to propose
straightforward and traditional associations between HLA
allelic frequencies and clinical outcomes. While HLA-B27,
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which is often associated with autoimmunity, is correlated with
asymptomatic genital herpes, the autoimmune haplotype,
HLA-A1-B8-DR3, was observed twice as frequently in symp-
tomatic than asymptomatic patients. Carriers of the B8-DR3
haplotype have a predominant Th2 profile [56]. Moreover, the
HLA haplotype A1, B8, DR3 itself is a risk factor for HIV-
related disease [16] and progression to AIDS [57]. HLA
haplotype B8-DR3 also confers susceptibility to autoimmune-
related hepatitis C virus mixed cryoglobulinemia [58]. This sug-
gests that symptomatic infection has an immunopathologic
component. Recent data on asymptomatic shedding are in ac-
cord with this possibility in that they demonstrate that fairly
comparable quantities of infectious virus and viral DNA are
recovered during symptomatic and asymptomatic outbreaks
[59]. Thus, what appears to distinguish the episodes may be
more the extent of host response–mediated injury than virus-
inflicted injury.

The importance of NK cell activity in response to herpesvirus
infections is exemplified by a patient who completely lacked an
NK cell population. The patient developed severe varicella,
cytomegalovirus, and herpes simplex infections in succession
[60]. NK cell–mediated cytotoxicity presents a first-line anti-
microbial response and is limited by NK cell inhibitory receptor
recognition of HLA peptides. Group 1 and group 2 NK cells
recognize HLA-Cw alleles; however, HLA binding of exoge-
nous peptides is required to mediate the inhibitory signal
[61–63]. of interest, loading of specific coxsackievirus peptide
sequences or the superantigen glutamic acid decarboxylase onto
HLA-Cw7 abrogates the normal inhibitory response of NK
cells and may be causal in the development of autoimmune
diabetes melitis [64]. The apparent protective role of HLA-Cw2
in HSV symptomatic disease may underlie a more robust initial
immune response by NK cells, resulting in a diminished pop-
ulation of latent virus. Conversely, HLA modulation of the NK
response may portend the vigor of the immune response to
HSV reactivation.

How and whether the MHC alleles are themselves responsible
for defining the variable host responses to HSV is unclear. The
MHC itself appears to regulate cytokine production [56], pre-
senting the possibility that elaborated cytokines may contribute
to the risk of acquiring herpes infection and disease. Moreover,
it is possible that other genes closely linked to and that co-
segregate in populations with them are responsible [12, 65].
Various complement genes, tumor necrosis factor (TNF) genes,
genes for peptide transporters, and the proteosome complex all
map close to the MHC loci. In this regard, it is noteworthy
that peptide transporter and TNF gene variants have been im-
plicated in susceptibility to HIV and cerebral malaria (reviewed
in [66]).

The present study suggests that purification of HSV peptides
that bind particular HLA motifs associated with protection
against infection or disease would provide rational components

of immunoprophylactic or immunotherapeutic vaccines for
genital herpes [67].
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